Language Processors: Overview of language processing
system: — preprocessors — compiler — assembler — Linkers &
loaders, difference between compiler and interpreter-
structure of a compiler:—phases of a compiler.

Lexical Analysis: - Role of Lexical Analysis: Lexical analysis
Versus Parsing — Tokens, Patterns, and Lexemes — Attributes
for Tokens — Lexical errors - Input Buffering: Buffer Pairs —
Sentinels

Specification of Tokens: Strings and Languages — Operations
on Languages — Regular Expressions — Regular Definitions

Recognition of Tokens: Transition Diagrams — Recognition of
Reserved Words and ldentifiers - Completion of the Running
Example — Architecture of a Transition—Diagram-Based Lexical
Analyzer

The Lexical Analyzer Generator (LEX): Use of Lex — Structure
of Lex Programs

Why Use a compiler?

* All computers only understand machine language

a program

* Therefore, high-level language instructions must be translated into
machine language prior to execution

Compiler

» A compiler is a large program that can read a program in one language the source
language - and translate 1t into an equivalent program in another language - the target
language;

* An important role of the compiler is to report any errors in the source program that it
detects during the translation process

* [f the target program is an executable machine-language program, it can then be called
by the user to process inputs and produce outputs.

Example

Source Code

um = X

Target Code

1101
1011
1 100
J1 10
1 1010
1011

Interpreter

An interpreter 15 another common kind of language]%rocessor. Instead of producir;g a target
program as a translation, an interpreter appears to directly execute the operations specified in the

source program or inputs supplied by the user

The machine-language target program produced by a compiler 1s usually much faster than an
interpreter at mapping inputs to outputs . An interpreter, however, can usually give better error
diagnostics than a compiler, because it executes the source program statement by statement.

Working Process of Compilers Vs Interpreter

Compilation Process:

Compile time B e

Interpretive Process:

No Intermediate Object Code is
Generated

Conditional Control Statements are
Executes slower

Memory Requirement is Less

Every time higher level program is
converted into lower level program

Errors are displayed for every
m is checked instruction interpreted (if any)

g language like C, C++use Programming language like Pythb_. o
5 Ruby use interpreters. .

Context of a Compiler

* The programs which assist the compiler to
convert a skeletal source code mnto executable
form make the context of a compiler and is as
follows:

* Preprocessor:

The preprocessor scans the source code and
mcludes the header files which

contain relevant information for various
functions.

* Compiler:

The compiler passes the source code through
various phases and generates the
target assembly code.

Skeleton Source Program

Preprocessor

l

Source Program

l

Compiler ‘

'

Assembly Code

'

Assembler ‘

'

Reloadable L‘.ar:“ln% Gode/Object Code

Loader/Linker

Executable Machine Code / Uprelocateable Machine Code / Abso

(Target Code)

lute Code

A preprocessor produce input to compilers. They may perform the
following functions.

1. Macro processing: A preprocessor may allow a user to define
macros that are short hands for

longer constructs.

2. File inclusion: A preprocessor may include header files into the
program text.

3. Rational preprocessor: these preprocessors augment older
languages with more modern flow-ofcontrol

and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add
capabilities to the language by certain

amounts to build-in macro

Cont....

* Assembler:

The assembler converts the assembly code into relocatable machine code or object
code. Although this code is in 0 and 1 form, but it cannot be executed because this
code has not been assigned the actual memory addresses.

* Loader/Link Editor:

It performs two functions. The process of loading consists of taking machine code,
altering the relocatable addresses and placing the altered instructions and data in
memory at proper location.

The link editor makes a single program from several files of relocatable machine
code. These files are library files which the program needs.

The loader/link editor produces the executable or absolute machine code.

Phases of Compiler Design

A compiler operates in phases. A phase is a logically interrelated operation
that takes source program in one representation and produces output in
another representation. The phases of a compiler are shown in below

There are two phases of compilation.
» Analysis (Machine Independent/Language Dependent)
» Synthesis(Machine Dependent/Language independent)

Compilation process 1s partitioned into no-of-sub processes called ‘phases’.

/

Source
Program

Compiler

Analysis

Synthesis

Target

Program

Analysis and Synthesis model

/

Source Program

l

Lexical Analyzer

l

Syntax Analyzer

Syntax Table
Management

Y

Semantic Analyzer

'

Intermediate Code Generation

Error routine

l

Code Optimization

:

Code Generation

'

Target Program

Phase-1: Lexical Analysis

* Lexical analyzer reads the stream of characters making up the source
program and groups the characters into meaningful sequences called
lexeme

* For each lexeme, the lexical analyzer produces a token of the form that it
passes on to the subsequent phase, syntax analysis

(token-name, attribute-value)
* Token-name: an abstract symbol 1s used during syntax analysis.

* attribute-value: points to an entry in the symbol table for this token.

Phase-2: Syntax Analysis

* Also called Parsing or Tokenizing.

* The parser uses the first components of the tokens produced by the lexical
analyzer to create a tree-like intermediate representation that depicts the
grammatical structure of the token stream.

* A typical representation 1s a syntax tree in which each interior node
represents an operation and the children of the node represent the
arguments of the operation

newval := oldval + 12 » Tokens:

newval Identifier

- Assignment operator
oldval Identifier

7 Add operator

12 Number

Lexical analyzer truncates white spaces and also removes errors.

Asse st

A\

identifier eXpression
newval expression expression
wdentifier number

oldval 12

Phase-3: Semantic Analysis

* The semantic analyzer uses the syntax tree and the information in the
symbol table to check the source program for semantic consistency with
the language definition.

* Gathers type information and saves it in either the syntax tree or the
symbol table, for subsequent use during intermediate-code generation.

* An important part of semantic analysis 15 type checking, where the
compiler checks that each operator has matching operands.

* For example, many programming language definitions require an array
index to be an integer; the compiler must report an error if a floating-point
number 15 used to index an array.

» Example: newval := oldval+12
The type of the 1dentifier newval must match with the type of expression (oldval+12).

Example:

* Semantic analysis

* Syntactically correct, but semantically incorrect

example:
sum= atb;
int a;

double sum; data type mismatch
char b;

Phase-4: Intermediate Code Generation

After syntax and semantic analysis of the source program, many compilers
generate an explicit low-level or machine-like intermediate representation
(a program for an abstract machine). This intermediate representation
should have two important properties:

* 1t should be easy to produce and
* 1t should be easy to translate into the target machine.
The considered intermediate form called three-address code, which consists

of a sequence of assembly-like instructions with three operands per
instruction. Each operand can act like a register.

This phase bridges the analysis and synthesis phases of translation.

Example:

newval ;= oldval + fact * 1

|

ld1 ;= 1d2 + |d3 * 1

Temp1 = into real (1)

Temp2 = ke Temp1
Temp3 - g, + Temp2
|d1 = Temp3

Phase-5: Code Optimization

* The compiler looks at large segments of the program to decide how to
improve performance

* The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result.

* Usually better means:
» faster, shorter code, or target code that consumes less power.

* There are simple optimizations that significantly improve the running time
of the target program without slowing down compilation too much.

* Optimization cannot make an inefficient algorithm efficient - “only makes
an efficient algorithm more efficient”

Example:

» The above intermediate code will be optimized as:

I
o
o

*
—

Temp1
d1

a2+ lempl

Phase-6: Code Generation

* The last phase of translation 1s code generation.

* Takes as input an intermediate representation of the source program and
maps it into the target language

* [f the target language 1s machine, code, registers or memory locations are
selected for each of the variables used by the program.

* Then, the intermediate instructions are translated into sequences of
machine instructions that perform the same task.

* A crucial aspect of code generation is the judicious assignment of registers
to hold variables.

Example:

ld1 :=1d2 +1d3 * 1
MOV R1,1d3
MUL R1,#1
MOV R2,1d2
ADD R1,R2

MOV

Id1,R1

Symbol-Table Management

* The symbol table 1s a data structure containing a record for each variable
name, with fields for the attributes of the name.

* The data structure should be designed to allow the compiler to find the
record for each name quickly and to store or retrieve data from that record
quickly

* These attributes may provide information about the storage allocated for a
name, 1ts type, its scope (where in the program its value may be used), and
in the case of procedure names, such things as the number and types of its
arguments, the method of passing each argument (for example, by value or
by reference), and the type returned.

old Val |d2 & attribute
fact |d3 &attribute

Error Handling Routine:

* One of the most important functions of a compiler 1s the detection and
reporting of errors in the source program. The error message should allow
the programmer to determine exactly where the errors have occurred.
Errors may occur in all or the phases of a compiler.

* Whenever a phase of the compiler discovers an error, it must report the
error to the error handler, which issues an appropriate diagnostic message.
Both of the table-management and error-Handling routines interact with all
phases of the compiler.

Code optimization

Code optimization phase attempts to improve the
intermediate code, so that faster-running machine
code will result.

Faster/shorter/Less power consumable target code.

Compiler spent significant amount of time on this
phase.

Optimized Three address code after Code
Optimization phase for the example statement is

* Example:

tl = inttofloat (60) tl = 143 » 60.0
t2 = id3 * ¢£1 1 idl = id2 + t1
t3 = 1d2 + t2 L

idl = ¢t3

Code Generation

* |t takes intermediate representation of the source
program as input and maps it into the target
language.

* If the target language is machine code, registers or
memory locations are selected for each of the
variables used by the program.

* |Intermediate instructions are translated into
sequences of machine instructions

Crucial part is assignment of registers to hold variables.
First operand of each instruction specifies destination.
F-> floating point number

#-> 60.0 consider as immediate constant

* MOVF id3, R2

* MULF #60.0, R2
* MOVF id2, R1

* ADDF R2, R1

* MOVF R1], id1

Error handler

Each phase encounters errors.

After detecting an error, a phase must somehow deal
with that error, so that compilation can proceed,
allowing further errors in the source program to be
detected.

Lexical analysis phase can detect errors that do not form
any token of the language.

Syntax analysis phase can detect the token stream that
violates the (structure (or) syntax rules of the language.

Semantic analysis phase detects the constructs that
have no meaning to the operation involved.

The process of compilation is One complete scan of the

carried in various steps.
Each step is called a phase

Different phases include:
LA,SA,SeA,ICG,CO,CG

source language is called pass
It includes reading an input file
and writing to an output file

Many phases can be grouped as
one pass

The task of compilation may be
carried out in single pass or
multiple passes

Role of Lexical Analysis

The lexical analyzer is the first phase of a compiler.

Its main task is to read the input characters and
produce as output a sequence of tokens that the
parser uses for syntax analysis.

Another task of lexical analyzer is stripping out from
the source program comments and white space in
the form of blank and tab and newline characters.

Correlating error messages from the compiler with
the source program.

SOUrce
program

lexical
anulyzer

token

r gel next

roken

parser

symbol
tablc

The lexical analyzer may keep track of the number of newline
characters seen, so that line number can be associated with an
error message.

In some compilers, the lexical analyzer is in charge of making a
copy of the source program with the error messages marked in
it.

If the lexical analyzer finds a token invalid, it generates an
error.

The lexical analyzer works closely with the syntax analyzer.

It reads character streams from the source code, checks for
legal tokens, and passes the data to the syntax analyzer when
it demands.

The lexical analyzer collects information about tokens into their
associated attributes.

After identifying the tokens, the strings are entered into
database called a symbol table.

It works in two phases:
1. Scan
2. Separation of tokens

Lexical analysis Vs Parsing

All compilers separate the task of analyzing syntax
into two different parts.

Lexical and syntax

Lexical-> small scale language constructs

— Names and literals

Syntax-> large scale language constructs

— expressions, statements and program units

Why lexical analysis is separated from
syntax analysis?
1. Simplicity

— lexical analysis is simplified because it is less complex than
syntax analyser

— Syntax analyser can be smaller and cleaner by removing low
level details of lexical analysis

2. Efficiency

— lexical analysis should be optimized (requires significant portion
of total compile time)

— Syntax analysis should not be optimized

3. Portability

— Lexical analysis may not be portable because input device-
specific peculiarities can be restricted to scanner

— Syntax analysis is always portable

Token

Token is a sequence of characters that can be treated
as a single logical entity. Sequence of characters
having the collective meaning in the source program

Typical tokens are identifiers, keywords, operators,
special symbols, constants.

Pattern: Set of rules that describe tokens

Lexeme: Sequence of characters in the source

program that are matched with a pattern of the
token

Suppose we have a simple programming language that includes the following

tokens:
— Keywords: if, else, while

— ldentifiers: Any sequence of letters and digits, starting with a letter

— Constants: Integers
Patterns

— Pattern for Keywords: if | else | while
— Pattern for Identifiers: [a-zA-Z][a-zA-Z0-9]*

— Pattern for Constants: [0-9]+

Now, let's identify lexemes in the given code based on these patterns:

INFORMAL DESCRIPTION

SAMPLE LEXEMES

characters i, £

characters e, 1, s, e
<Or>or<=o0r>=or==90r !=
letter followed by letters and digits

any numeric constant

anything but ", surrounded by "’s

if

else

<=, I=

pi, score, D2
3.14159, 0, 6.02e23

"core dumped"

— Keywords:
o TOKEN
o |
if
* else
else
— ldentifiers: comparison
e X id
.y number
— Constants: literal
0
e 2

e 1

Figure 3.2: Examples of tokens

Attributes for Tokens:
* A token has only a single attribute — a pointer to the symbol-table
entry in which the information about the token 1s kept.
¢ The token names and associated attribute values for the statement
e E=M*C+2 are wnitten below as a sequence of pairs.
<id, pointer to symbol-table entry for E>
<assign_op>
<id, pointer to symbol-table entry for M>
<mult_op>
<id, pointer to symbol-table entry for C>
<add_op>

<number, integer value 2>

Lexical errors

It is hard for lexical analyzer to tell without aid of
other computers, that there is a source code
error.

Some errors are out of power of lexical analyzer
to recognize: —fi (a == f(x)) ...
Lexical analyzer can not tell whether fi is a

misspelling keyword if or an undeclared function
identifier. Since fi is valid lexeme.

Such errors are recognized when no pattern for
tokens matches a character sequence.

 Other phase of the compiler probably parser
handle this type of error.

* |f lexical analyser unable to proceed because of
none of the patterns for tokens matches any
prefix of the remaining input,

 The simplest recovery strategy is panic mode
recovery

Error recovery

* Panic mode: successive characters are ignored
until we reach to a well formed token

— Delete one character from the remaining input

— Insert a missing character into the remaining input
— Replace a character by another character

— Transpose two adjacent characters

Input Buffering:

Buffer Pairs — Sentinels
Input Buffering

 There are times when a lexical analyzer needs to
look ahead several characters beyond the lexeme
for a token before a match can be announced.

« Buffering techniques can be used to reduce the
overhead required to process input characters.

 The buffer 1s divided into two N-character halves.

B §- X ¥ R - T R T

7 Jforward

lexeme_beginning

Fig. 3.3. An input buffcr in two halves.

Buffer pairs

* Because of the amount of time taken to
process characters and number of characters
must be processed during the compilation of
large source program, specialized buffering
techniques have been introduced.

e We need to introduce a two buffer scheme to
handle large look-aheads safely

] . . =

E = fo*i’C:*f*fzfeof:

T A
forward
lexemeBegin
Figure 3.3: Using a pair of input buffers
Each buffer is of same size N
N is usually size of disk block
We can read N characters into a buffer

If fewer than N characters remain in the
input file, then a special character
represented by eof marks the end of the
source file.

Two pointers to the input are maintained:

1. Pointer lexeme begin :marks the beginning
of the current lexeme

2. Pointer forward: scans until a pattern match
is found

Once the next lexeme is determined, forward
is set to the character at its right end.

Lexeme begin is set to the character
immediately after the lexeme just found.

Input Buffering(Cont.)

if forward at end of first half then begin

reload second half;
forward := forward + 1

end
else if forward at cnd of sccond half then begin

reload first half;

move forward to beginning of first half
end
else forward := forward + 1,

Fig. 3.4. Codc to advance forward pointcr.

Sentinels

 For each character read we make two tests:

— ohe for the end of the buffer
— One to determine what character is read

> We can combine the buffer-end test with the
test for the current character if we extend each
buffer to hold a sentinel character at the end.

»The sentinel is a special character that can not
be part of the source program -eof

* Eof is marked for the end of the entire input.

* Any eof that appears other than at the end of
a buffer means that the input is at an end.

"B - sné*éeorcé* * 2ef © : : . ‘eof

T forward
lexemeBegin

Figure 3.4: Sentinels at the end of each buffer

Sentinels
to Improving Input Buffering (Cont.)

forward := forward + 1,
if forward? = eof then begin
if forward at end of first half then begin
reload second half;
forward := forward + |
end
else if forward at end of sccond half then begin
reload first half;
move forward to beginning of first half
end
else /= eof within a buffer signifying end of input »/
terminatc lexical analysis
end

Specification of Tokens

* |In theory of compilation regular expressions
are used to formalize the specification of

tokens
* Regular expressions are means for specifying

regular languages

—Strings and Languages

— Operations on Languages
— Regular Expressions

— Regular Definitions

Strings and Languages

Some Concepts:
* symbol: letters, digits, and punctuation
* alphabet: any finite set of symbols

e.g. {0,1}, ASCII, Unicode
* string: a finite sequence of symbols

|s|: length of a string s

€: empty string
* language: any countable set of strings

e.g. ®, {€}, C programs, English sentences

The following string-related terms are commonly used:

1. A prefiz of string s is any string obtained by removing zero or more
symbols from the end of s. For example, ban, banana, and € are
prefixes of banana.

2. A suffiz of string s is any string obtained by removing zero or more
symbols from the beginning of s. For example, nana, banana, and ¢
are suffixes of banana.

3. A substring of s is obtained by deleting any prefix and any suffix
from s. For instance, banana, nan, and € are substrings of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those,
prefixes, suffixes, and substrings, respectively, of s that are not € or
not equal to s itself.

5. A subsequence of s is any string formed by deleting zero or more
not necessarily consecutive positions of s. For example, baan is a
subsequence of banana.

Operations on strings:
* concatenation: xy
e.g. 1) x=dog,y = house ,xy = doghouse.
2) ES=S€E=S
* exponentiation:

SO =¢ Sl — gi-lg
S'=5
S =SS

S° =SSS

Operations on Languages

* union: LUM={s [sisinLorsisin M}

* concatenation: LM ={st [sisin Land tisin M}
* closure:

a) Kleene closure:

b) Positive closure: L =Uil

E=UZL

I. LU D is the set of letters and digits — strictly speaking the language
with 62 strings of length one, each of which strings is either one letter or

one digit.

2. LD is the set of 520 strings of length two, each consisting of one letter
followed by one digit.

3. L' is the set of all 4-letter strings.
4, L* is the set of all strings of letters, including ¢, the empty string.

5. L(L'U D)* is the set of all strings of letters and digits beginning with a
letter,

6. D* is the set of all strings of one or more digits.

Regular Expressions

* Describing languages
e.g. Cidentifiers: letter (letter |digit)*

notice:
a) The regular expressions are built recursively out of smaller

regular expressions
b) Each regular expression r denotes a language L(r)

* BASIS: (two rules)
1. € is a regular expression, and L(€) is {€}
2. Ifaisasymbolin } ,then ais a regular expression,
and L(a) = {a}

* INDUCTION:
1. (r)|(s) is a regular expression denoting the language L(r) U
L(s)
2. (r)(s) is a regular expression denoting the language L(r)L(s)
3. (r)*is a regular expression denoting (L(r))*
4. (r) is a regular expression denoting L(r)

* Some conventions:

1. * has highest precedence and is left associative

2. Concatenation has second highest precedence and is left
associative

3. | has lowest precedence and is left associative
e.g. (a)|((b)*(c)) =alb*c
* reqular set:
A language that can be defined by a regular expression

* equivalent

Two regular expressions r and s denote the same
regular set, write r=s

* Algebraic laws for regular expressions

LAW DESCRIPTION
rls = slr | is commutative
r|(s|t) = (rs)|t | is associative
Wst) = (rs)t Concatenation is associative
r(s|t) = rs|rt; (s|t)r = sr|tr | Concatenation distributes over |
- rErE="T ¢ is the identity for concatenation
r* = (rle)* ¢ ig guaranteed in a closure
' =r * is idempotent

Regular Definitions
* Regular Definition

A sequence of definitions of the form:
dl->r1
d2->r2

dn->rn
where:
1. Each di is a new symbol
2. Eachriis a regular expression

* Example:
C identifiers
letter ->A[B]...|Z]alb] ...|]z] _
digit->0[1]/.../9
id ->letter (letter [digit)*

* The regular definition for Unsigned numbers (integer or floating point)
such as 5280, 0.01234, 6.336E4, or 1.89E-4,
o digit=20(12]..|9
* digits = digit digit*
“ optionalFraction < .digits | &
* optionalExponent 2 (E(+ |- | &) digits) | &
* number < digits optionalFraction optionalExponent

* More examples: integer constant, string constants, reserved words, operator,
real constant.

Extensions of Regular Expressions
* One or more instances: +

1. (r)+denotes the language (L(r))+
2.r*=r+f[€
3.r+=rr*=r*r
e Zero or one instance: ?
1. r? =rl€
2. L{r?) =L(r) U {€}
 Character classes:
1.a,la,I... |a,=[aa,...a,].
2.al|b]... |z=[a-Z]

Recognition of Tokens

Transition Diagrams
Recognition of Reserved Words and ldentifiers
Completion of the Running Example

Architecture of a Transition—Diagram-Based
Lexical Analyzer

.Recognition of Tokens
How to recognize tokens?

* Reserved words: if, else, then...
* [d: letter

* Number: digit

* Relop: <, >, =, <=, >=, <>...

» Ws: blank, tab, newline...

stmt —
|
|
expr —
|
term —

if expr then stmt

if expr then stmt else stmi
€

term relop term

term

id

number

Figure 3.10: A grammar for branching statements

digit
digits
number
letter
id

if

then
else
relop

141111 idd

Figure 3.11

[0-9]
digit*

digits (. digits)? (E [+-]? digits)?
[A-Za-z]

letter (letter | digit)*

iz

then

else

<|>|<=]>=|=]|<

: Patterns for tokens of Example 3.8

ws — (blank | tab | newline)*

LEXEMES TOKEN NAME | ATTRIBUTE VALUE
Any ws - -
if if -
then then -
else else =,
Any id id Pointer to table entry
Any number number Pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE

Figure 3.12: Tokens, their patterns, and attribute values

Transition Diagrams

* States: represents a condition

* Edges: directed from one state to another

* Some Conventions:
1. Accepting or final states
2. *: retract the forward pointer one position
3. Start or initial state

Transition Diagrams for >=

start)Q)\/ > O
other
€

Fig. 3.11. Transition diagram for >=.

 start state : stare 0 in the above example
 If mmput character 1s >, go to state 6.

» other refers to any character that i1s not indicated
by any of the other edges leaving s.

Transition Diagrams for
Relational Operators

start

) return(relop, LE)
>

(3) return(relop, NE)
*

= return(rilop. GIE)

other .

return(relop, GT)

Fig. 3.12. Transition diagram for relational opcrators.

Recognition of Reserved Words and Identifiers

Two ways to handle reserved words:
* Install the reserved words in the symbol table initially

letter or digit

-

\
start tetter {) other)
___.@f >® —@ return (getToken(), installID())

Create separate transition diagrams for each
keyword

start t h e n nonlet/dig N
—O0—O0—0O0——O0—0——0O

« gettoken(): return token (id, if, then,...) if it
looks the symbol table

* mstall 1d(): return O 1f keyword or a pointer
to the symbol table entry if id

* Transition diagram for token number

Implement a Transition Diagrams

* A sequence of transition diagrams can be
converted into a program to look for tokens.

» Each state gets a segment of code.

 state and start record the current state and the
start state of current transition diagram.

* |exical value is assigned the pointer returned by
install_id() and install_num() when an identifier
or number 1s found.

 When a diagram fails, the function fail() is used
to retract the forward pointer to the position of the
lexeme beginning pointer and to return the start
state of the next diagram. If all diagrams fail the
function fail() calls an error-recovery routine.

Architecture of a Transition-Diagram-Based
Lexical Analyzer

* A sketch of getRelop() to simulate the transition

diagram for relop

TOKEN getRelop()
{
TOKEN retToken = new(RELOP);
while(1) { /* repeat character processing until a return
or failure occurs =/
switch(state) {
case 0: ¢ = nextChar();
if (¢ == 2¢?) gtate = 1;
else if (c == ’=?) gtate = 5;
else if (¢ == ?>?) gtate 6;
else fail(); /# lexeme is not a relop */
break;
case 1: ...

case 8: retract();
retToken.attribute = GT;
return(retToken) ;

int state = 0, start = 0;
int lexical_value;
/% to "return" second component of token =/

int fail()
{
forward = token_beginning;
switch (start) {
case 0: start = 9; break;
case 9: start = 12; break;
case 12: start = 20; break;
case 20: start = 25; break;
case 25: recover(); break;
default: /# compiler error #*/

}
return start;

* Ways code fit into the entire lexical analyzer

1. Arrange for the transition diagrams for each
token to be tried sequentially

2. Run the various transition diagrams "in
parallel”

3. Combine all the transition diagrams into one
(preferred)

Lexical Analyzer Generator - Lex

Lex Source program I.exical
lex.1 2 : > lex.yy.c
' Compiler
1 C
eX.yy.c : > a.out
compiler
Input stream Sequence
of tokens

* The lex tool is a widely used lexical analyzer
generator.

* It helps in automatically generating a lexical
analyzer (scanner) for processing input text based
on user-defined patterns.

e The main purpose of lex is to simplify and
automate the process of tokenizing input data,
which is an essential first step in many programs
like compilers, interpreters, and text processors.

An input file, which we call lex.1, is written in the
Lex language and describes the lexical analyzer to
be generated.

The Lex compiler transforms lex.1 to a C program,
in a file that is always named lex.yy.c.

The latter file is compiled by the C compiler into a
file called a. out, as always.

The C-compiler output is a working lexical analyzer
that can take a stream of input characters and
produce a stream of tokens.

The attribute value, whether it be another numeric
code, a pointer to the symbol table, or nothing, is
placed in a global variable yylval, which is shared
between the lexical analyzer and parser, thereby
making it simple to return both the name and an
attribute value of a token.

Structure of Lex programs

declarations

%%

translation rules > Pattern {Action}
%%

auxiliary functions

The declarations section includes declarations of
variables, manifest constants (identifiers declared to
stand for a constant, e.g., the name of a token), and
regular definitions.

The translation rules each have the form
Pattern{ Action}

Each pattern is a regular expression, which may use the
regular definitions of the declaration section.

The actions are fragments of code, typically written in C,
although many variants of Lex using other languages
have been created.

The third section holds whatever additional functions are
used in the actions.

Alternatively, these functions can be compiled separately

and loaded with the lexical analyzer.

When called by the parser, the lexical analyzer
begins reading its remaining input, one character at
a time, until it finds the longest prefix of the input
that matches one of the patterns P.

It then executes the associated action A.

Typically, A, will return to the parser, but if it does
not (e.g., because P describes whitespace or
comments), then the lexical analyzer proceeds to
find additional Ilexemes, until one of the
corresponding actions causes a return to the
parser.

The lexical analyzer returns a single value, the
token name, to the parser, but uses the shared,
integer variable yylval to pass additional
information about the lexeme found, if needed.

Al

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP x/

h}

/* regular definitions */

delim
ws
letter
digit
id
number

tolh

{ws}

if

then
else
{id}
{number}
|l<ll

Mg=1t

[\t\n]

{delim}+

[A-Za-z]

[0-9]

{letter} ({letter}|{digit})*
{digit}+(\.{digit}+)?(E[+-]17{digit}+)?

{/* no action and no return */}

{return(IF);}

{return(THEN) ; }

{return(ELSE) ; }

{yylval = (int) installID(); return(ID);}
{yylval = (int) installNum(); return(NUMBER);}
{yylval = LT; return(RELOP);}

{yylval = LE; return(RELOP);}

Han {yylval =
UPSIL {yylval =
L {yylval =
=it {yylval =

ol

int installID() {/=*

}

EQ; return(RELQOP);}
NE; return(RELOP);}
GT; return(RELOP);}
GE; return(RELOP);}

function to install the lexeme, whose
first character is pointed to by yytext,
and whose length is yyleng, into the
symbol table and return a pointer
thereto x/

int installNum() {/* similar to installID, but puts numer-

}

ical constants into a separate table */

The action taken when id is matched is

1. Function installID() is called to place the lexeme found in the symbol
table.

2. This function returns a pointer to the symbol table, which is placed in
global variable yylval, where it can be used by the parser or a later
component of the compiler. Note that installID() has available to it
two variables that are set automatically by the lexical analyzer that Lex
generates:

(a) yytext is a pointer to the beginning of the lexeme, analogous to
lexemeBegin in Fig. 3.3.

(b) yyleng is the length of the lexeme found.

3. The token name ID is returned to the parser.

The action taken when a lexeme matching the pattern number is similar, using
the auxiliary function installNum(). O

EXPRESSION MATCHES - EXAMPLE
c the one non-operator character ¢ a

e character c literally *

Hytt string s literally Mok

. any character but newline a.*b

) beginning of a line ~abc

$ end of a line abc$
[s] any one of the characters in string s | [abc]
["s] any one character not in string s [~abc]
T zero or more strings matching r ax

r+ one or more strings matching » a+

r? Zero or one r a?
r{m,n} between m and n occurrences of r a[1,5]
r1T2 an r, followed by an rs ab

Ty | T2 an r; Or an ro alb
(r) same as r (alb)
r1 /T2 r, when followed by 7

abc/123

Figure 3.8: Lex regular expressions

